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Abstract. A rigorous derivation of the linear equations which describe the relaxation of a 
gas mixture to equilibrium is given. These equations contain new representations of the 
collision kernel and enable a better understanding of the rate and manner of disturbances in 
a gas. By specializing to the case of stationary scattering centres, with a small perturbed fast 
group, we arrive at the general equations of radiation damage which yield the collision 
density of slowed down particles. The equation adjoint to this is shown to be closely related 
to the equations of radiation damage deduced by other authors. Our equations are obtained 
by a logical sequence of approximations based upon the non-linear Boltzmann equation for 
gas mixtures. 

1. Introduction 

Tie ubiquity of the Boltzmann transport equation is truly remarkable. This particle 
balance equation for the velocity distribution function describes the behaviour not only 
Of gas atoms but also of charged particles, neutrons, photons and phonons. Early 
practical work on the transport equation, other than the pioneering advances of 
khnann, Maxwell and Hilbert, may be associated with the names of Pidduck (1915), 
Chapman (1916,1917) and Enskog (1917). The main purpose of these authors was to 
obtain solutions to the linearized transport equation for the calculation of intrinsic 
Properties of gases such as viscosity, thermal conductivity and diffusion rates. Subse- 
Weat work extended the scope of the transport equation to cover new particles as they 
were discovered (Davison 1957, Chandrasekhar 1960, Jancel and Kahan 1966). 

In recent years the Boltzmann equation has found further applications in the study 
Ofradiation damage (Sigmund 1972, bibfried and Mika 1965, Dederichs et d 1966). 
l n ~  important field of study, the main approach has been to regard the medium as a 
mndom collection of scatterers and to calculate the particle range and the number of 

displacements, both of which can give a measure of damage. Also in this area 
ia)hthe problem of surface sputtering, a topic of immense importance in assessing the 
vlabiliq of potential thermonuclear reactors. In this respect, the equations of damage ke been formulated by basic balance considerations (Lindhard et 1968) without 
kt reference to the Boltzmann equation. Such a derivation, whilst satisfactory, is 

to highlight the limitations of the method and can lead to misunderstandings 
when the effects of thermal motion are to be studied. Moreover, a consistent approxi- 
mahon Procedure based upon well-established principles is intrinsically more satisfac- 
ha~dless  open to criticism. 

Itlsthe Purpose of this paper to establish the equations for the slowing down of fast 
Parhcl@in a medium composed of an arbitrary number of different scattering Species, 
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directly from the Boltzmann equation. We must state at the outset that in order todo 
this in the context of radiation damage in solids or molecular liquids, it is neew to 

age 
SSUme binary collisions. Such an assumption is Usually made in current dam 
theories and whilst it may be open to question in Some situations we do not intend to 
offer any alternative here (Sigmund 1974). The other main assumption throughoutr~ 
work is that there exists an energy (of the order of 25 eV) above which atoms rema 
freely when struck as though they were the constituents of a gas. These reail atomin 

strike further atoms and so on, thereby producing a cascade process. Such a p r m  
is ideally described by the transport equation. We shall not consider the specificdamage 
function, which determines the number of atomic displacements, since there are a 
variety of mechanisms postulated for this, none of which depend specifically 00 the 
Boltnann equation. 

In addition to a derivation of the basic damage equations we shall in the course of 
our work obtain a very general set of equations for the relaxation of a gas mivture 
governed by arbitrary scattering laws. The scattering kemels so obtained are generali- 
zations of those obtained many years ago by other authors (Ferziger and Kaper 1972); 
we believe, however, that in the form presented here they are a novel contribution.The 
limit of these kernels for stationary scatterers is identical to those deduced by previous 
authors. Finally, we shall discuss the adjoint Boltzmann equation and its physical 
meaning. 

2. General theory 

2.1. The basic equation 

The Boltzmann equation for a mixture of atoms undergoing binary collisions may be 
written as follows: 

where f i ( U ,  r, t )  is the distribution function of atoms of type i and ai is the acceleration 
on a particle due to external forces. The terms on the left-hand side of the equation 
denote drift out of a phase space element due to particle motion. The term on *.e 
right-hand side represents changes in the distribution function due to collisions. It is * 

From the usual arguments (Williams 1971) we may write the collision terms as 
term that must now be considered in Some detail. 

follows: 

of particles 
where Wj( . . . ) is the transition probability, defined below, for scattering We ha@ 
with velocities (U)], U’) before collision to velocities ( u l ,  U) after collision. 

In order to reduce equation (2) to a convenient form we shall write fi(u) as 
suppressed the independent variables (r, t )  in the distribution functions. folloM: 

(3) 
f i ( U )  = nifM,(U) + G,(v) 
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dere ni is the number of atoms in the equilibrium Maxwell-Boltzmann distribution 
fnr,(o) and G,(u) is the number of atoms disturbed from equilibrium. Inserting (3) into 
(l)adm&iplying out, the quantity in square brackets becomes, in obvious notation, 

$ , { n I n i M g ( ~ ‘ ) f ~ ,  (0:  + n,.fMj(v: Gt (0’) + nifMz(u’)Gj(u{) + Ga ( U ‘ )  Gj( U:) }  

- R , { n ~ , . f ~ ,  ( o h ,  (0 ) + n,.fM, (ul G, (U) + n,fM,(u) G, (U, 

+G,(u)G,(vi)). (4) 

NOW using detailed balance, i.e. %, = R,, we note that the terms involving the 
distributions f ,  (U) vanish. Moreover, we make the assumption that the 

desityof perturbed atoms is so small that the chance of a perturbed atom collidingwith 
nother perturbed atom is negligibly small. Thus we may neglect the terms involving the 
products GIGp The physical process therefore is one of perturbed atoms in collision 
with thermal atoms: note, however, that any struck thermal atom can enter the 
perturbed distribution and in tum cause further perturbations. We have therefore a 
m a d e  effect which is described accurately by the following collision rate: 

2.2. The scattering kemel 

Any further progress depends upon an evaluation of the kernel appearing in equation 
(5 ) .  In specifying qj we follow the procedure discussed by Williams (1 971) from which 
we can write 

Wj(ol -j t ) l ;  U’+ U) 

2Ml 
M2 

=aij(iu:-u’l; COS-~((U~-U‘) . ( U ~ - U ) / ( U : - U ‘ ) * ) ) - ( M ~ + M Z ) *  

X &(Mi U’ + M~o: - MI U - M ~ u  I )  S (Mi d2 + M2 U:’ - MI u2 - M ~ u : )  (6) 

where the S functions denote conservation of momentum and energy and aij(g, 0,) is the 
cross section for particles with relative velocity g to be scattered through an 

an& 4 in the centre-of-mass system. 
Using equation (6) we may evaluate the averages over qj which arise in equation 

(’). Suppressing the subscripts i and j ,  we must calculate the following (i = 1, j = 2): 

Inserting the scattering kernel and performing the integration over U: with the 
”Erties of the delta function S3 noted, reduces the integral readily to one over 
’ and 0’. Introducing a change of variables g = u l - u  and g‘=ol+M,u/Mz 
% ‘M2)0’/M2 and noting that 

0 

dol du’ = dg dg’ 
MI +M2 
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we can simplify our integral (7) into the following form: 

2G(u) I dg I dg’h2(g  + u)dg’; cos-’ k ’  . g/g’21)6(g2-gr2). 
(8) 

Defining polar coordinates such that g’ . g = gg’ COS 8, and dg’ = g” dg‘ sin  de& 
we find 

Gr 

(9) 
G(u) [ d g f ~ ~ k  +u)g2r  [ sin oc de,&, 0,) 

0 

which can be written 

(10) G(u) [ d g f d g + u ) g 4 d  = G ( ~ ) u @ ( u )  

where r (g)  is the total cross section and 5(g) is defined by the average over fM2 

indicated. 

Maxwell-Boltzmann distribution when 
Now there are two important distributions to consider for fM2(u) .  The first is the 

and the second isfM2(u) = 6(u) ,  i.e. the limit of the Maxwellian as thescatterersbecome 
stationary. The latter distribution is a useful approximation when the perturbed 
particles have energies very much greater than kT. 

In the case of the Maxwellian, equation (10) can be written 

whereas for stationary scatterers it becomes 

The next term to be obtained is 

Integrating out the S3 function as before we are left with an integral over 0;  anda’.  
The integral over U’ cannot be performed since G(u’) is the dependent variable. 
However, writing equation (14) in the form 

du’G(d)crI(u‘+ u )  

it is possible to obtain an expression for aI. This involves some careful integratingover ndix 
the remaining delta function and a change of variable. Details are givenin the app 
and the result can be written in the following concise manner: 

(16) 
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To proceed further, it is necessary to specify f ~ .  Thus in the case of the Maxwellian 
fwldon, equation (16) may be cast into the following form (details in appendix): 

For stationary scatterers we can set fM2(g’+ U‘) = 6(g’+ 0’) in equation (16). vI then 
becomes 

where 

and clo is the cosine of the angle between U and U’. 
The 6 function in equation (18) implies the following restriction on U’: 

’he  next term in equation (5 )  to be reduced is 

Following the procedure outlined above and given in detail in the appendix, we obtain 
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men the MaWellian fM,(u) is used in equation (211, we find after some cOnSiderable 
effort 

M~ (U: - U)’(M~ + M’)’ xexp -- I ~~TM;+M:-~MIM~COS Bc 

(Ml + M2)M2 sin 8, 
Io( $ I u ’  M: + Mi - 2M1M2 COS 8, 

For stationary scatterers we get 

where 

This last relationship will prove to be of value in later work. PI) is the cosine of the 
angle between U and U’,, and v i  is restricted in the following manner: 

The final term to be considered is 
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2.3. Physical meaning of the scattering function 

ne collision rate defined in equation (5 )  can now be written in a more concise fahion, 
namely: 

Each of the cross sections U(”)  has a definite physical meaning. Firstly, we consider 
he case when i # j ,  then a?) is the cross section for a particle of mass Mi, velocity U‘ 
before collision to be scattered by a particle of mass Mj into unit velocity interval at 0. 

&) is the cross section for a particle of mass Mj velocity U’, before collision to be 
scattered by a particle of mass M, and for the particle Mi to be scattered into unit 
velocity interval at U. is the cross section for a particle of mass 4, velocity ul after 
collision to be accompanied by a particle of mass Mi which is scattered into unit velocity 
interval at U. Finally, q is the total cross section for scattering of particles Mi with 
particles 4. We note that a?) and al$ contribute to the velocity interval U of particles 
M,, whereas a;$ and q deplete that velocity interval. The cross sections for i # j in 
equations (32) have not been given before. The case €or i = j ,  i.e. a single species gas, has 
been given and our general results in equations (17), (22) and (30) reduce to that case 
(Ferziger and Kaper 1972). 

3. Equation for the slowing down of fast atoms 

3.1. The velocity distribution 

A considerable amount of effort has gone into obtaining solutions of the Boltzmann 
equation m the case of atoms slightly perturbed from the equilibtium distribution. It has 
been shown for example that the relaxation of a uniform gas can be represented in the 

form (Cercignani 1969): 

‘Ihe 4 denote discrete eigenvalues and the integral term a continuous spectrum. The 
cases of hard spheres and Maxwell molecules are fully understood (Williams 1971). 
DrflicultieS arise when the initial distribution is composed of atoms with energies very 
much greater than kT. In such a case the contribution of the continuous spectrum is 
Paramount and the associated mathematical treatment is cumbersome even for the two 
models cited earlier. A much more direct method for studying the Velocity distribution 
pf “fast’ atoms is to allow the physical temperature to become zero ,and to use the 
‘lowing down’ kernels given by equations (13), (18), (23) and‘ (30). This type of 
approach is used extensively in neutron transport theory. 
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-c njvuij(v)Gi(v,fl, r, t)+Qi(v, fl, r, t) .  
i (34) 

A few points in this equation require some explanation. For example, it should be 
noted that we have omitted the term involving a$. In view of the presence of the term 
S(u), this omission is justified on the following grounds. It does not contribute to 
conservation of energy or momentum; moreover, itrepresents the contribution to G(u) 
of the zero energy particles or, to put it otherwise, it is the reduction in the number of 
stationary scatterers due to those which have been scattered to higher energies. Since by 
definition this is a small number and cannot have any appreciable effect on the total 
scattering, it may be ignored. For T # 0 it must not be ignored. 

Further points requiring elucidation are the quantities 

and 

Also I.CO = 42 . U, & = a. 0; and voi is the speed of the fastest particle from the souce. 
Equation (34) is quite general and will describe the slowing down of Particles 

prescribed by any scattering law q ( v ;  ea. 

3.2. The energy distribution 

It is frequently more convenient to write the Boltzmann equation in terms Of the energ 
variable E = ;Mu2. Thus we define E = ij-~&v', E' = ;Lqo'2 and E: =&'f,d? f-heparticie 
density N can therefore be written 

(37) 
v2Gi(v, a) dv = %(E, C(2) dE  

and the source 

v2Qi(v, a) dv = Si(E, 42) dE. 
(38) 
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and introducing the energy dependent flux 4 ( E )  = uN(E) we can reduce equation (34) 
to the following form: 

I ~ C V  +i(Ef, a, r, t )  uij( 

x a( po-hj( (E) ‘ I 2 ) )  3 J d\n: + j ( ~ { ,  ai, r, t)  1 -aij E / ( Y - ~ ~ ~ )  E: 

- I ~ , ~ i j ( ( ~ 1 ’ 2 ) 4 i ( E ~  a, r, t)+Si(E, a, r, t) (39) 

where for simplicity we have omitted the force term on the left-hand side. The equation 
wil l  be recognized as being similar to the equation for neutron. slowing down. The 
Merence arises from the second integral term on the right-hand side which accounts 
for the recoil of the scattered particles. In neutron transport theory this may be 
neglected, whereas in many other problems involving particle cascades it may not. If the 
time and space dependence of ,equation (39) is omitted and the equation is integrated 
over the angular variable, it reduces to the infinite medium, steady state equations of 
Kostin (1965, 1966) and Kostin and Felder (1966). The equations (39) have not 
appeared in the literature before. 

3.3. The adjoint equation 

An important conclusion of our work may be obtained by considering the equation 
wally adjoint to equation (39) with respect to energy: thus if we define $(E, 0, r, t )  
as the Partial adjoint, it becomes the solution of 

fitQ* Vr)ILi(E, a, r, t )  
2 1/2 E’ 112 =z a I E 2- dE’ I dW @i(E’, a, P, t)Vij(($ ; B,( (E) )) 

I 1 -aij aijE 

x a ( p o - f i j ( ( g )  I/*)) 

1 /2 
- x n , o i j ( ( 3  ) + ~ ~ , a , r ,  t ) + s f ( E , a 7 r 9  t). 

I 
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setting E’ = E -E{ in the first integral term on the right-hand side of equation (40) that 
term becomes 

Defining T = E:, we have then changed our Boltzmann equation to the ‘backwad‘ 
form deduced by Sigmund and Lindhard et al. TO complete the picture the adjoint 
source must be defined as 

men, from the definition of the adjoint (or importance) function (hwins 1965), 

(43) 
is the mean number of atoms averaged over direction with energy in the range (,?&, 
Eoi + dEoi) in the volume element dr at time t due to a primary at6m of energy E, 
direction 42 at ro at time zero. It should be noted that in the backward formulation, it is 
the initial energies and directions that are the independent variables. 

$(E, a, ro, 0 + Eoi, r, t )  d&i dr 

4. Discussion 

In the introduction we have outlined the large range of problems in which the 
Bdt”nn equation can be employed. The derivation that followed of the equationsof 
radiation damage reinforce that remark and also illustrate the role played by the adjoint 
equation or backward formulation. As we have noted, the backward equations cank 
derived from direct physical arguments. However, it does not seem possible to obtain 
them in that form directly from the non-linear Bolemann equation. The most rigorom 
formulation in that respect would 6e to start from the backward form of the 
Smoluchowski equations, which are inherently linear and do not therefore enable the 
hitations of the perturbation theory to be assessed (Lindhard and Nielsen 1971).ne 
present method is an advance since it enables errors to be assessed by solving,*e 
non-hear equations which arise from overlapping cascades. Whilst the Wa0oos 
derived here are similar to those deduced by earlier workers, the associated Scattenag 
kernels in their most general form have not appeared before and therefore openthewaY 
to a better understanding of time and space relaxation in gas mixtures. 

We have not discussed any applications of the damage equations since this 
and the related one of time and space variation will be presented in a comPa~onpa~r’ 

Appendix. Derivation of the scattering kernel 

In order to demonstrate the general technique used to calculate the scattering 
we shall consider only air; the calculations of 

kerDeb 

and gIII are similar. 
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ne explicit form of equation (20) in the text may be written thus 

1)- (u i -u? .  (ut-U) 
(0; - u y  

xO(loi-u‘l; cos-I { 
btegrating over u1 using the property of the delta function Ss, we find 

[dui /du‘h(u’ )G(d)  ~ ( M I + M z ) ~  2Ml 

X S (MI U’’ + M~V;’  - MI v2  - &(U: + (Ml/M2)( U’ - U)}’). (A.2) 

Now setting g’ = U: - U’ and noting that 

we obtain equations (20) and (21) of the text. 
For stationary scatterers we can set 

fM*(u: -g‘) = S(u’l -g’)  

from which equation (A.2) reduces to 

where the delta function relationship has been used to simplify the argument Of the 
cos-’{. . . } term. Since cos 6, is given by 

it clear that 

In addition, the delta function written as 

dearbrestricts v i  to the bounds indicated by equation (26). 
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The reduction of equation (A.2) ,  when f~~ is the Maxwell-Bolmann functian, is 
more complicated. Inserting the form for f M l  leads to 

where po = U; . g’/u’lg’ and g’lu‘l -uIp’= g’ . (U: -U). Using the relationship between 
po, p’ and p, where v;lu; -0111 =U: . (U: -U), namely: 

= pp’+(1 -p2)1’2(1 -/.Lt2)1/2 cos ( (v-4) 

and integrating over +’, we obtain 

X g’dg’a(g’; . . , ) exp{ --+- M d 2  Mi U: (u:-u) 
l(M2+M1)/(M2-M,)l lu:-ul 

2kT kT (u{-u)~ 

The limits on g‘ are given by the physical roots of the equation defined by the delta 

Setting g” = t2(ui -U)’ and simplifying, equation (A.7) becomes 
function in equation (A.6). 

+-- 
2kT Mi 
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